Binary Factorization by Neural Autoassociators.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F03%3A06030150" target="_blank" >RIV/67985807:_____/03:06030150 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Binary Factorization by Neural Autoassociators.
Original language description
In this paper we demonstrate that Hebbian learning in Hopfield-like neural network is a natural procedure for binary factorization. Due to this learning, factors become the attractors of network dynamics. The neurodynamics is analyzed by Single-Step approximation, which is known to be rather accurate for sparsely encoded Hopfield-network. The accuracy of Single-Step approximation is confirmed by computer simulations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LN00B096" target="_blank" >LN00B096: Center for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence and Applications.
ISBN
0-88986-390-3
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
649-653
Publisher name
ACTA Press
Place of publication
Zürich
Event location
Benalmadena [ES]
Event date
Sep 8, 2003
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—