All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F04%3A00405186" target="_blank" >RIV/67985807:_____/04:00405186 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Binary Factorization in Hopfield-Like Neural Networks: Single-Step Approximation and Computer Simulations

  • Original language description

    The unsupervised learning of feature extraction in high-dimensional patterns space is a central problem for the neural network approach. Feature extraction is a procedure which maps original patterns into the feature (or factor) space of reduced dimension. In this paper we demonstrate that Hebbian learning in Hopfield-like neural network is a natural procedure for unsupervised learning of feature extraction. Due to this learning, factors become the attractors of network dynamics, hence they can be revealed by the random search. The neurodynamics is analysed by Single-Step approximation which is known citeFROHUM97 to be rather accurate for sparsely encoded Hopfield-network. Thus, the analysis is restricted by the case of sparsely encoded factors. The accuracy of Single-Step approximation is confirmed by computer simulations.

  • Czech name

    Binární faktorová analýza pomocí Hopfieldovy neuronové sítě: Jednokroková aproximace a počítačová simulace

  • Czech description

    Učení extrakce příznaků bez učitele, ve vysocedimenziálních vzorech, je centrálním problémem Neuronového přístupu. Extrakce příznaků je procedura, která zobrazuje originální vzory do prostoru příznaků (faktorů) menší dimenze. V této práci dokazujeme, žeHebbovo učení v síti Hopfieldova typu je přirozenou procedurou pro učení extrakce příznaků bez učitele. Makroskopické chování této sítě je modelováno pomocí aproximace prvního kroku (single step aproximation).

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F01%2F1192" target="_blank" >GA201/01/1192: Research of neural networks capability to provide nonlinear Boolean factor analysis</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    14

  • Pages from-to

    139-152

  • UT code for WoS article

  • EID of the result in the Scopus database