Binary Factorization in Hopfield-Like Neural Autoassociator: A Promising Tool for Data Compression.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F03%3A06030184" target="_blank" >RIV/67985807:_____/03:06030184 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Binary Factorization in Hopfield-Like Neural Autoassociator: A Promising Tool for Data Compression.
Original language description
Proposed approach of data compression is based on feature extraction procedure which maps original patterns into features (factors) space of reduced, possibily very small, dimension. It is shown that Hebbian unsupervised learning of Hopfield-like neuralnetwork is a natural procedure for factor extraction. Due to this learning, factors become the attractors of network dynamics, hence they can be revealed by the random search.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F1192" target="_blank" >GA201/01/1192: Research of neural networks capability to provide nonlinear Boolean factor analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Nets and Genetic Algorithms.
ISBN
3-211-00743-1
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
58-62
Publisher name
Springer-Verlag
Place of publication
Wien
Event location
Roanne [FR]
Event date
Apr 23, 2003
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—