All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

How to make Simpler GMRES and GCR more Stable

Result description

In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a simple recursion formula. We show that a different choice of the basis can significantly influence the numerical behavior of theresulting implementation. While Simpler GMRES and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a new implementation, which is conditionally backward stable, and they explain the experimentally observed fact that the GCR method delivers very accurate approximate solutions when it converges fast enough without stagnation.

Keywords

large-scale nonsymmetric linear systemsKrylov subspace methodsminimum residual methodsnumerical stabilityrounding errors

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    How to make Simpler GMRES and GCR more Stable

  • Original language description

    In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a simple recursion formula. We show that a different choice of the basis can significantly influence the numerical behavior of theresulting implementation. While Simpler GMRES and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a new implementation, which is conditionally backward stable, and they explain the experimentally observed fact that the GCR method delivers very accurate approximate solutions when it converges fast enough without stagnation.

  • Czech name

    Jak stabilizovat metody Simpler GMRES and GCR?

  • Czech description

    V této práci analyzujeme numerické chování několika metod minimalizujících normu rezidua, které jsou matematicky ekvivalentní metodě GMRES. Porovnáváme dva základní postupy: postup, který je založen na výpočtu aproximace řešení z horní trojúhelníkové soustavy pro její souřadnice a postup, kde jsou aproximace postupně upravovány jednoduchou rekurzní formulí. Práce ukazuje, že volba báze vypočteného prostoru může podstatným způsoben ovlivnit numerickou stabilitu implementace daných metod. Z důvodu špatnépodmíněnosti zvolené báze jsou implementace Simpler GMRES a ORTHODIR méně stabilní. Na druhé straně se ukazuje, ze pokud metoda konverguje dostatečně rychle, je báze reziduí dobře podmíněná. Tyto výsledky pak vedou k nove implementaci, která je podmíněnězpětně stabilní, a potvrzují experimentálně známý fakt, že metoda GCR v případě dostatečně rychlé konvergence generuje velice přesné aproximace řešení.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    30

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000263103700013

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2008