All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On GMRES for singular EP and GP systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00490058" target="_blank" >RIV/67985840:_____/18:00490058 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/17M1128216" target="_blank" >http://dx.doi.org/10.1137/17M1128216</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/17M1128216" target="_blank" >10.1137/17M1128216</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On GMRES for singular EP and GP systems

  • Original language description

    In this contribution, we study the numerical behavior of the generalized minimal residual (GMRES) method for solving singular linear systems. It is known that GMRES determines a least squares solution without breakdown if the coefficient matrix is range-symmetric (EP) or if its range and nullspace are disjoint (GP) and the system is consistent. We show that the accuracy of GMRES iterates may deteriorate in practice due to three distinct factors: (i) the inconsistency of the linear system, (ii) the distance of the initial residual to the nullspace of the coefficient matrix, and (iii) the extremal principal angles between the ranges of the coefficient matrix and its transpose. These factors lead to poor conditioning of the extended Hessenberg matrix in the Arnoldi decomposition and affect the accuracy of the computed least squares solution. We also compare GMRES with the range restricted GMRES method. Numerical experiments show typical behaviors of GMRES for small problems with EP and GP matrices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    1033-1048

  • UT code for WoS article

    000436971900020

  • EID of the result in the Scopus database

    2-s2.0-85049744175