All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES

Result description

The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz,SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] for solving linear systems Ax=b is implemented as a sequence of least squares problems involving Krylov subspaces of increasingdimensions. The most usual implementation is modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that MGS-GMRES is backward stable. The result depends on a more general result on the backward stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses other new results on MGS and its loss of orthogonality, together with an important but neglected condition number, and a relation between residual norms and certain singular values.

Keywords

rounding error analysismodified Gram-SchmidtQR factorizationloss of orthogonalityleast squaressingular valuesbackward stabilitylinear equationscondition numberslarge sparse matricesiterative solutionKrylov subspace methodsArnoldimethodgeneralized minimum residual method

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES

  • Original language description

    The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz,SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] for solving linear systems Ax=b is implemented as a sequence of least squares problems involving Krylov subspaces of increasingdimensions. The most usual implementation is modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that MGS-GMRES is backward stable. The result depends on a more general result on the backward stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses other new results on MGS and its loss of orthogonality, together with an important but neglected condition number, and a relation between residual norms and certain singular values.

  • Czech name

    Modifikovaný Gram-Schmidtův algoritmus, úloha nejmenších čtverců a zpětná stabilita metody GMRES

  • Czech description

    Metodu zobecněných minimálních reziduí (GMRES) [Y. Saad a M.Schultz, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] pro řešení nesymetrických soustav lineárních rovnic Ax=b lze interpretovat jako posloupnost problémů nejmenších čtverců na Krylovovských prostorech s rostoucí dimenzí. Nejpoužívanější implementace metody MGS-GMRES používá na výpočet bazí těchto prostorů Modifikovaný Gram-Schmidtův ortogonalizační proces (MGS). V této publikaci je ukázáno, že implementace MGS=GMRES je zpětně stabilním algoritmem. Tento výsledek vyplývá z obecnějšího výsledku o zpětné stabilitě varianty algoritmu MGS aplikované na problém nejmenších čtverců a využívá další nové poznatky o ztrátě ortogonality v MGS, nově zavedeném čísle podmíněnosti a vztahu mezi normou rezidua a některými singulárními čísly.

Classification

  • Type

    Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    264-284

  • UT code for WoS article

  • EID of the result in the Scopus database

Basic information

Result type

Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

Jx

CEP

BA - General mathematics

Year of implementation

2006