All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F02%3A06020010" target="_blank" >RIV/67985807:_____/02:06020010 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods.

  • Original language description

    In this paper theoretical results of [C. Paige and Z. Strakoš, Bounds for the least squares distance using scaled total least squares, Numer. Math., to appear] are extended to the GMRES context. The bounds that are developed are important in theory, butthey also have fundamental practical implications for the finite precision behavior of the modified Gram-Schmidt implementation of GMRES, and perhaps for other minimum norm methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1030103" target="_blank" >IAA1030103: Scalable Sparse Linear Algebraic Solvers: Analysis, Development, Implementation and Application</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2002

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    1899-1924

  • UT code for WoS article

  • EID of the result in the Scopus database