Evolutionary Trained Radial Basis Function Networks for Robot Control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00321610" target="_blank" >RIV/67985807:_____/08:00321610 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evolutionary Trained Radial Basis Function Networks for Robot Control
Original language description
In this paper, the radial basis function neural network is used as the control mechanism of the robot. Evolutionary algorithm is used to train the agent to perform several tasks. A comparison to multilayer perceptron neural networks and reinforcement learning is made and the results are discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100300804" target="_blank" >KJB100300804: Neural Networks Learning Algorithms Based on Regularization Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Control, Automation, Robotics and Vision
ISBN
978-1-4244-2286-9
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
IEEE
Place of publication
Piscataway
Event location
Hanoi
Event date
Dec 17, 2008
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000266716600144