Dynamic Classifier Systems and their Applications to Random Forest Ensembles
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00326646" target="_blank" >RIV/67985807:_____/09:00326646 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Dynamic Classifier Systems and their Applications to Random Forest Ensembles
Original language description
Classifier combining is a popular method for improving quality of classification -- instead of using one classifier, several classifiers are organized into a classifier system and their results are aggregated into a final prediction. However, most of thecommonly used aggregation methods are static, i.e., they do not adapt to the currently classified pattern. In this paper, we provide a general framework for dynamic classifier systems, which use dynamic confidence measures to adapt to a particular pattern. Our experiments with random forests on 5 artificial and 11 real-world benchmark datasets show that dynamic classifier systems can significantly outperform both confidence-free and static classifier systems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Adaptive and Natural Computing Algorithms
ISBN
978-3-642-04920-0
ISSN
—
e-ISSN
—
Number of pages
11
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Kuopio
Event date
Apr 23, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—