On Best Approximations of Polynomials in Matrices in the Matrix 2-Norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00330308" target="_blank" >RIV/67985807:_____/09:00330308 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On Best Approximations of Polynomials in Matrices in the Matrix 2-Norm
Original language description
We show that certain matrix approximation problems in the matrix 2-norm have uniquely defined solutions, despite the lack of strict convexity of the matrix 2-norm. The problems we consider are generalizations of the ideal Arnoldi and ideal GMRES approximation problems introduced by Greenbaum and Trefethen [SIAM J. Sci. Comput., 15 (1994), pp. 359-368]. We also discuss general characterizations of best approximation in the matrix 2-norm and provide an example showing that a known sufficient condition foruniqueness in these characterizations is not necessary.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100300802" target="_blank" >IAA100300802: Theory of Krylov subspace methods and its relationship to other mathematical disciplines</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000270196000004
EID of the result in the Scopus database
—