Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00331128" target="_blank" >RIV/67985807:_____/09:00331128 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
Original language description
Regularization theory presents a sound framework to solving supervised learning problems. However, there is a gap between the theoretical results and practical suitability of regularization networks (RN). Radial basis function networks (RBF) that can beseen as a special case of regularization networks have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied to real-world data, to a certain degree. This can provide several recommendations for strategies on choosing number of units in RBF network.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Grid and Distributed Computing
ISSN
2005-4262
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
2
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—