On the Favorable Estimation for Fitting Heavy Tailed Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342150" target="_blank" >RIV/67985807:_____/10:00342150 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Favorable Estimation for Fitting Heavy Tailed Data
Original language description
Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Statistics
ISSN
0943-4062
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
19
Pages from-to
—
UT code for WoS article
000280074100008
EID of the result in the Scopus database
—