All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Favorable Estimation for Fitting Heavy Tailed Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00342150" target="_blank" >RIV/67985807:_____/10:00342150 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Favorable Estimation for Fitting Heavy Tailed Data

  • Original language description

    Assessment of heavy tailed data and its compound sums has many applications in insurance, auditing and operational risk capital assessment among others. In this paper, we compare the classical estimators (maximum likelihood, QQ and moment estimators) with the recently introduced robust estimators of ?generalized median, ?trimmed mean and estimators based on t-score moments. We derive the exact distribution of the likelihood ratio tests of homogeneity and simple hypothesis on the tail index of a two-parameter Pareto model. Such exact tests support the assessment of the performance of estimators. In particular, we discuss some problems that one can encounter when misemploying the log-normal assumption based methods supported by the Basel II framework. Real data and simulated examples illustrate the methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computational Statistics

  • ISSN

    0943-4062

  • e-ISSN

  • Volume of the periodical

    25

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000280074100008

  • EID of the result in the Scopus database