All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hybrid Learning of Regularization Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00345012" target="_blank" >RIV/67985807:_____/10:00345012 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hybrid Learning of Regularization Neural Networks

  • Original language description

    Regularization theory presents a sound framework to solving supervised learning problems. However, the regularization networks have a large size corresponding to the size of training data. In this work we study a relationship between network complexity,i.e. number of hidden units, and approximation and generalization ability. We propose an incremental hybrid learning algorithm that produces smaller networks with performance similar to original regularization networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/KJB100300804" target="_blank" >KJB100300804: Neural Networks Learning Algorithms Based on Regularization Theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Intelligence and Soft Computing

  • ISBN

    978-3-642-13231-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Zakopane

  • Event date

    Jun 13, 2010

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000281548200015