Hybrid Learning of Regularization Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00345012" target="_blank" >RIV/67985807:_____/10:00345012 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Hybrid Learning of Regularization Neural Networks
Original language description
Regularization theory presents a sound framework to solving supervised learning problems. However, the regularization networks have a large size corresponding to the size of training data. In this work we study a relationship between network complexity,i.e. number of hidden units, and approximation and generalization ability. We propose an incremental hybrid learning algorithm that produces smaller networks with performance similar to original regularization networks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB100300804" target="_blank" >KJB100300804: Neural Networks Learning Algorithms Based on Regularization Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Intelligence and Soft Computing
ISBN
978-3-642-13231-5
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Springer
Place of publication
Berlin
Event location
Zakopane
Event date
Jun 13, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000281548200015