Relation Liftings on Preorders and Posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00368502" target="_blank" >RIV/67985807:_____/11:00368502 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/11:00192735
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-22944-2_9" target="_blank" >http://dx.doi.org/10.1007/978-3-642-22944-2_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-22944-2_9" target="_blank" >10.1007/978-3-642-22944-2_9</a>
Alternative languages
Result language
angličtina
Original language name
Relation Liftings on Preorders and Posets
Original language description
The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application we present Moss?s coalgeraic logic over posets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraic Methods in Proof Theory</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra and Coalgebra in Computer Science
ISBN
978-3-642-22943-5
ISSN
—
e-ISSN
—
Number of pages
15
Pages from-to
115-129
Publisher name
Springer
Place of publication
Berlin
Event location
Winchester
Event date
Aug 30, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—