Evolutionary Learning of Regularization Networks with Multi-kernel Units
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00369159" target="_blank" >RIV/67985807:_____/11:00369159 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-21105-8_62" target="_blank" >http://dx.doi.org/10.1007/978-3-642-21105-8_62</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-21105-8_62" target="_blank" >10.1007/978-3-642-21105-8_62</a>
Alternative languages
Result language
angličtina
Original language name
Evolutionary Learning of Regularization Networks with Multi-kernel Units
Original language description
Regularization networks represent an important supervised learning method applicable for regression and classification tasks. They benefit from very good theoretical background, although the presence of meta parameters is their drawback. The meta parameters, including the type of kernel function, are typically supposed to be given in advance and come ready as an input of the algorithm. In this paper, we propose multi-kernel functions, namely product kernel functions and composite kernel functions. The choice of kernel function becomes part of the optimization process, for which a new evolutionary learning algorithm is introduced that deals with different kernel functions, including composite kernels. The results are demonstrated on experiments with benchmark tasks.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Learning of functional relationships from high-dimensional data</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Networks ? ISNN 2011. Part I
ISBN
978-3-642-21104-1
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
538-546
Publisher name
Springer
Place of publication
Berlin
Event location
Guilin
Event date
May 29, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000301802600062