All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evolutionary Learning of Regularization Networks with Multi-kernel Units

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00369159" target="_blank" >RIV/67985807:_____/11:00369159 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-21105-8_62" target="_blank" >http://dx.doi.org/10.1007/978-3-642-21105-8_62</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-21105-8_62" target="_blank" >10.1007/978-3-642-21105-8_62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evolutionary Learning of Regularization Networks with Multi-kernel Units

  • Original language description

    Regularization networks represent an important supervised learning method applicable for regression and classification tasks. They benefit from very good theoretical background, although the presence of meta parameters is their drawback. The meta parameters, including the type of kernel function, are typically supposed to be given in advance and come ready as an input of the algorithm. In this paper, we propose multi-kernel functions, namely product kernel functions and composite kernel functions. The choice of kernel function becomes part of the optimization process, for which a new evolutionary learning algorithm is introduced that deals with different kernel functions, including composite kernels. The results are demonstrated on experiments with benchmark tasks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F1368" target="_blank" >GAP202/11/1368: Learning of functional relationships from high-dimensional data</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Neural Networks ? ISNN 2011. Part I

  • ISBN

    978-3-642-21104-1

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    538-546

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Guilin

  • Event date

    May 29, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000301802600062