Arithmetical Complexity of First-Order Fuzzy Logics. Chapter 11
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00372990" target="_blank" >RIV/67985807:_____/11:00372990 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Arithmetical Complexity of First-Order Fuzzy Logics. Chapter 11
Original language description
The main problem in this chapter is not whether a given predicate logic is decidable or not, but rather how undecidable it is, i.e. what is its undecidability degree. For the general semantics, the undecidability degrees are low. For the standard semantics, it depends: in the cases where we have standard completeness, like MTL or IMTL, the undecidability degrees are trivially as in the general semantics, in other cases, like Łukasiewicz first-order logic, the undecidability degrees are higher but stillin the arithmetical hierarchy, while in product logic or in BL logic both tautologicity and satisfiability for the standard semantics fall outside the arithmetical hierarchy.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Handbook of Mathematical Fuzzy Logic
ISBN
978-1-84890-054-7
Number of pages of the result
56
Pages from-to
853-908
Number of pages of the book
928
Publisher name
College Publications
Place of publication
London
UT code for WoS chapter
—