On Consistency and Decidability in Some Paraconsistent Arithmetics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F21%3A00546146" target="_blank" >RIV/67985955:_____/21:00546146 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.26686/ajl.v18i5.6921" target="_blank" >https://doi.org/10.26686/ajl.v18i5.6921</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.26686/ajl.v18i5.6921" target="_blank" >10.26686/ajl.v18i5.6921</a>
Alternative languages
Result language
angličtina
Original language name
On Consistency and Decidability in Some Paraconsistent Arithmetics
Original language description
The standard style of argument used to prove that a theory is undecidable relies on certain consistency assumptions, usually that some fragment or other is negation consistent. In a non-paraconsistent setting, this amounts to an assumption that the theory is non-trivial, but these diverge when theories are couched in paraconsistent logics. Furthermore, there are general methods for constructing inconsistent models of arithmetic from consistent models, and the theories of such inconsistent models seem likely to differ in terms of complexity. In this paper, I begin to explore this terrain, working, particularly, in inconsistent theories of arithmetic couched in three-valued paraconsistent logics which have strong (i.e. detaching) conditionals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
60301 - Philosophy, History and Philosophy of science and technology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Australasian Journal of Logic
ISSN
1448-5052
e-ISSN
1448-5052
Volume of the periodical
18
Issue of the periodical within the volume
5
Country of publishing house
AU - AUSTRALIA
Number of pages
30
Pages from-to
473-502
UT code for WoS article
000723228000001
EID of the result in the Scopus database
—