Highly Robust Statistical Methods in Medical Image Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00369205" target="_blank" >RIV/67985807:_____/12:00369205 - isvavai.cz</a>
Result on the web
<a href="http://www.ibib.waw.pl/bbe/bbefulltext/BBE_32_2_003_FT.pdf" target="_blank" >http://www.ibib.waw.pl/bbe/bbefulltext/BBE_32_2_003_FT.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Highly Robust Statistical Methods in Medical Image Analysis
Original language description
Standard multivariate statistical methods in medical applications are too sensitive to the assumption of multivariate normality and the presence of outliers in the data. This paper is devoted to robust statistical methods. In the context of medical imageanalysis they allow to solve the tasks of face detection and face recognition in a database of images. The results of the robust approaches in image analysis turn out to outperform those obtained with standard methods. Robust methods also have desirableproperties appealing for practical applications, including dimension reduction and clear interpretability.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M06014" target="_blank" >1M06014: Centre of Biomedical Informatics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Biocybernetics and Biomedical Engineering
ISSN
0208-5216
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
14
Pages from-to
3-16
UT code for WoS article
000305102200001
EID of the result in the Scopus database
—