All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On computing quadrature-based bounds for the A-norm of the error in conjugate gradients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00390209" target="_blank" >RIV/67985807:_____/13:00390209 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s11075-012-9591-9" target="_blank" >http://dx.doi.org/10.1007/s11075-012-9591-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11075-012-9591-9" target="_blank" >10.1007/s11075-012-9591-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On computing quadrature-based bounds for the A-norm of the error in conjugate gradients

  • Original language description

    In their original paper, Golub and Meurant (BIT 37:687?705, 1997) suggest to compute bounds for the A-norm of the error in the conjugate gradient (CG) method using Gauss, Gauss-Radau and Gauss-Lobatto quadratures. The quadratures are computed using the (1,1)-entry of the inverse of the corresponding Jacobi matrix (or its rank-one or rank-two modifications). The resulting algorithm called CGQL computes explicitly the entries of the Jacobi matrix and its modifications from the CG coefficients. In this paper, we use the fact that CG computes the Cholesky decomposition of the Jacobi matrix which is given implicitly. For Gauss-Radau and Gauss-Lobatto quadratures, instead of computing the entries of the modified Jacobi matrices, we directly compute the entries of the Cholesky decompositions of the (modified) Jacobi matrices. This leads to simpler formulas in comparison to those used in CGQL.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100300802" target="_blank" >IAA100300802: Theory of Krylov subspace methods and its relationship to other mathematical disciplines</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Numerical Algorithms

  • ISSN

    1017-1398

  • e-ISSN

  • Volume of the periodical

    62

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    29

  • Pages from-to

    163-191

  • UT code for WoS article

    000314058700001

  • EID of the result in the Scopus database