On Robust Information Extraction from High-Dimensional Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00427963" target="_blank" >RIV/67985807:_____/14:00427963 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5937/sjm9-5520" target="_blank" >http://dx.doi.org/10.5937/sjm9-5520</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5937/sjm9-5520" target="_blank" >10.5937/sjm9-5520</a>
Alternative languages
Result language
angličtina
Original language name
On Robust Information Extraction from High-Dimensional Data
Original language description
Information extraction from high-dimensional data represents an important problem in current applications in management or econometrics. An important problem from a practical point of view is the sensitivity of machine learning methods with respect to the presence of outlying data values, while numerical stability represents another important aspect of data mining from high-dimensional data. This paper gives an overview of various types of data mining, discusses their suitability for high-dimensional data and critically discusses their properties from the robustness point of view, while we explain that the robustness itself is perceived differently in different contexts. Moreover, we investigate properties of a robust nonlinear regression estimator ofKalina (2013).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Serbian Journal of Management
ISSN
1452-4864
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
1
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
14
Pages from-to
131-144
UT code for WoS article
—
EID of the result in the Scopus database
—