On Coupling Robust Estimation with Regularization for High-Dimensional Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474072" target="_blank" >RIV/67985807:_____/17:00474072 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-55723-6_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-55723-6_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-55723-6_2" target="_blank" >10.1007/978-3-319-55723-6_2</a>
Alternative languages
Result language
angličtina
Original language name
On Coupling Robust Estimation with Regularization for High-Dimensional Data
Original language description
Standard data mining procedures are sensitive to the presence of outlying measurements in the data. Therefore, robust data mining procedures are highly desirable, which are resistant to outliers. This work has the aim to propose new robust classification procedures for high-dimensional data and algorithms for their efficient computation. Particularly, we use the idea of implicit weights assigned to individual observation to propose several robust regularized versions of linear discriminant analysis (LDA), suitable for data with the number of variables exceeding the number of observations. The approach is based on a regularized version of the minimum weighted covariance determinant (MWCD) estimator and represents a unique attempt to combine regularization and high robustness, allowing to down-weight outlying observations. Classification performance of new methods is illustrated on real fMRI data acquired in neuroscience research.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA13-23940S" target="_blank" >GA13-23940S: Personality and spontaneous brain activity during rest and movie watching: relation and structural determinants</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Data Science. Innovative Developments in Data Analysis and Clustering
ISBN
978-3-319-55722-9
ISSN
1431-8814
e-ISSN
—
Number of pages
13
Pages from-to
15-27
Publisher name
Springer
Place of publication
Cham
Event location
Bologna
Event date
Jul 5, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—