All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Coupling Robust Estimation with Regularization for High-Dimensional Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474072" target="_blank" >RIV/67985807:_____/17:00474072 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-55723-6_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-55723-6_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-55723-6_2" target="_blank" >10.1007/978-3-319-55723-6_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Coupling Robust Estimation with Regularization for High-Dimensional Data

  • Original language description

    Standard data mining procedures are sensitive to the presence of outlying measurements in the data. Therefore, robust data mining procedures are highly desirable, which are resistant to outliers. This work has the aim to propose new robust classification procedures for high-dimensional data and algorithms for their efficient computation. Particularly, we use the idea of implicit weights assigned to individual observation to propose several robust regularized versions of linear discriminant analysis (LDA), suitable for data with the number of variables exceeding the number of observations. The approach is based on a regularized version of the minimum weighted covariance determinant (MWCD) estimator and represents a unique attempt to combine regularization and high robustness, allowing to down-weight outlying observations. Classification performance of new methods is illustrated on real fMRI data acquired in neuroscience research.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA13-23940S" target="_blank" >GA13-23940S: Personality and spontaneous brain activity during rest and movie watching: relation and structural determinants</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Data Science. Innovative Developments in Data Analysis and Clustering

  • ISBN

    978-3-319-55722-9

  • ISSN

    1431-8814

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    15-27

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bologna

  • Event date

    Jul 5, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article