Highly Robust Analysis of Keystroke Dynamics Measurements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00438100" target="_blank" >RIV/67985807:_____/15:00438100 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21460/15:00225042
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Highly Robust Analysis of Keystroke Dynamics Measurements
Original language description
Standard classification procedures of both data mining and multivariate statistics are sensitive to the presence of outlying values. In this paper, we propose new algorithms for computing regularized versions of linear discriminant analysis for data withsmall sample sizes in each group. Further, we propose a highly robust version of a regularized linear discriminant analysis. The new method denoted as MWCD-L2-LDA is based on the idea of implicit weights assigned to individual observations, inspired bythe minimum weighted covariance determinant estimator. Classification performance of the new method is illustrated on a detailed analysis of our pilot study of authentication methods on computers, using individual typing characteristics by means of keystroke dynamics.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
SAMI 2015
ISBN
978-1-4799-8220-2
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
133-138
Publisher name
IEEE Hungary Section
Place of publication
Budapest
Event location
Herl'any
Event date
Jan 22, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—