All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Complexity of Shallow Networks Representing Functions with Large Variations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00430374" target="_blank" >RIV/67985807:_____/14:00430374 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-11179-7_42" target="_blank" >http://dx.doi.org/10.1007/978-3-319-11179-7_42</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-11179-7_42" target="_blank" >10.1007/978-3-319-11179-7_42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Complexity of Shallow Networks Representing Functions with Large Variations

  • Original language description

    Model complexities of networks representing multivariable functions is studied in terms of variational norms tailored to types of network units. It is shown that the size of the variational norm reflects both the number of hidden units and sizes of output weights. Lower bounds on growth of variational norms with increasing input dimension d are derived for Gaussian units and perceptrons. It is proven that variation of the d-dimensional parity with respect to Gaussian Support Vector Machines grows exponentially with d and for large values of d, almost any randomly-chosen Boolean function has variation with respect to perceptrons depending on d exponentially.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LD13002" target="_blank" >LD13002: Modeling of complex systems for softcomputing methods</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning - ICANN 2014

  • ISBN

    978-3-319-11178-0

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    331-338

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Hamburg

  • Event date

    Sep 15, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article