All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Model Complexities of Shallow Networks Representing Highly Varying Functions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00446410" target="_blank" >RIV/67985807:_____/16:00446410 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neucom.2015.07.014" target="_blank" >http://dx.doi.org/10.1016/j.neucom.2015.07.014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2015.07.014" target="_blank" >10.1016/j.neucom.2015.07.014</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Model Complexities of Shallow Networks Representing Highly Varying Functions

  • Original language description

    Model complexities of shallow (i.e., one-hidden-layer) networks representing highly varying multivariable {-1,1}{-1,1}-valued functions are studied in terms of variational norms tailored to dictionaries of network units. It is shown that bounds on thesenorms define classes of functions computable by networks with constrained numbers of hidden units and sizes of output weights. Estimates of probabilistic distributions of values of variational norms with respect to typical computational units, such as perceptrons and Gaussian kernel units, are derived via geometric characterization of variational norms combined with the probabilistic Chernoff Bound. It is shown that almost any randomly chosen {-1,1}{-1,1}-valued function on a sufficiently large d-dimensional domain has variation with respect to perceptrons depending on d exponentially.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LD13002" target="_blank" >LD13002: Modeling of complex systems for softcomputing methods</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Volume of the periodical

    171

  • Issue of the periodical within the volume

    1 January

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    7

  • Pages from-to

    598-604

  • UT code for WoS article

    000364883900062

  • EID of the result in the Scopus database

    2-s2.0-84947029082