All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lower Bounds on Complexity of Shallow Perceptron Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00460704" target="_blank" >RIV/67985807:_____/16:00460704 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-44188-7_21" target="_blank" >http://dx.doi.org/10.1007/978-3-319-44188-7_21</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-44188-7_21" target="_blank" >10.1007/978-3-319-44188-7_21</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lower Bounds on Complexity of Shallow Perceptron Networks

  • Original language description

    Model complexity of shallow (one-hidden-layer) perceptron networks computing multivariable functions on finite domains is investigated. Lower bounds are derived on growth of the number of network units or sizes of output weights in terms of variations of functions to be computed. A concrete construction of a class of functions which cannot be computed by perceptron networks with considerably smaller numbers of units and output weights than the sizes of the function’s domains is presented. In particular, functions on Boolean d-dimensional cubes are constructed which cannot be computed by shallow perceptron networks with numbers of hidden units and sizes of output weights depending on d polynomially. A subclass of these functions is described whose elements can be computed by two-hidden-layer networks with the number of units depending on d linearly.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Applications of Neural Networks

  • ISBN

    978-3-319-44187-0

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    283-294

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Aberdeen

  • Event date

    Sep 2, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article