Max-min and min-max Approximation Problems for Normal Matrices Revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00435950" target="_blank" >RIV/67985807:_____/14:00435950 - isvavai.cz</a>
Result on the web
<a href="http://etna.mcs.kent.edu/volumes/2011-2020/vol41/abstract.php?vol=41&pages=159-166" target="_blank" >http://etna.mcs.kent.edu/volumes/2011-2020/vol41/abstract.php?vol=41&pages=159-166</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Max-min and min-max Approximation Problems for Normal Matrices Revisited
Original language description
We give a new proof of an equality of certain max-min and min-max approximation problems involving normal matrices. The previously published proofs of this equality apply tools from matrix theory, (analytic) optimization theory, and constrained convex optimization. Our proof uses a classical characterization theorem from approximation theory and thus exploits the link between the two approximation problems with normal matrices on the one hand and approximation problems on compact sets in the complex plane on the other.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Transactions on Numerical Analysis
ISSN
1068-9613
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
4 July
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
159-166
UT code for WoS article
000348498600010
EID of the result in the Scopus database
—