All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cholesky-like Factorization of Symmetric Indefinite Matrices and Orthogonalization with Respect to Bilinear Forms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00399416" target="_blank" >RIV/67985807:_____/15:00399416 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/130947003" target="_blank" >http://dx.doi.org/10.1137/130947003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130947003" target="_blank" >10.1137/130947003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cholesky-like Factorization of Symmetric Indefinite Matrices and Orthogonalization with Respect to Bilinear Forms

  • Original language description

    It is well known that orthogonalization of column vectors in a rectangular matrix $B$ with respect to the bilinear form induced by a nonsingular symmetric indefinite matrix $A$ can be eventually seen as its factorization $B=QR$ that is equivalent to theCholesky-like factorization in the form $B^TAB=R^T Omega R$, where $R$ is upper triangular and $Omega$ is a signature matrix. Under the assumption of nonzero principal minors of the matrix $M=B^T A B$ we give bounds for the conditioning of the triangular factor $R$ in terms of extremal singular values of $M$ and of only those principal submatrices of $M$ where there is a change of sign in $Omega$. Using these results we study the numerical behavior of two types of orthogonalization schemes and we give the worst-case bounds for quantities computed in finite precision arithmetic. In particular, we analyze the implementation based on the Cholesky-like factorization of $M$ and the Gram--Schmidt process with respect to the bilinear form i

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP108%2F11%2F0853" target="_blank" >GAP108/11/0853: Nanostructures with transition metals: Towards ab-initio material design</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    727-751

  • UT code for WoS article

    000357407800019

  • EID of the result in the Scopus database

    2-s2.0-84936754616