Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00438625" target="_blank" >RIV/67985807:_____/15:00438625 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/130946009" target="_blank" >http://dx.doi.org/10.1137/130946009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130946009" target="_blank" >10.1137/130946009</a>
Alternative languages
Result language
angličtina
Original language name
Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems
Original language description
We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1--22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
225-250
UT code for WoS article
—
EID of the result in the Scopus database
—