All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00438625" target="_blank" >RIV/67985807:_____/15:00438625 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/130946009" target="_blank" >http://dx.doi.org/10.1137/130946009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130946009" target="_blank" >10.1137/130946009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

  • Original language description

    We develop a general convergence theory for the generalized minimal residual method preconditioned by inner iterations for solving least squares problems. The inner iterations are performed by stationary iterative methods. We also present theoretical justifications for using specific inner iterations such as the Jacobi and SOR-type methods. The theory improves previous work [K. Morikuni and K. Hayami, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 1--22], particularly in the rank-deficient case. We also characterize the spectrum of the preconditioned coefficient matrix by the spectral radius of the iteration matrix for the inner iterations and give a convergence bound for the proposed methods. Finally, numerical experiments show that the proposed methods are more robust and efficient compared to previous methods for some rank-deficient problems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    225-250

  • UT code for WoS article

  • EID of the result in the Scopus database