Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00439569" target="_blank" >RIV/67985807:_____/15:00439569 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/140965363" target="_blank" >http://dx.doi.org/10.1137/140965363</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/140965363" target="_blank" >10.1137/140965363</a>
Alternative languages
Result language
angličtina
Original language name
Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit
Original language description
Ensemble filters implement sequential Bayesian estimation by representing the probability distribution by an ensemble mean and covariance. Unbiased square root ensemble filters use deterministic algorithms to produce an analysis (posterior) ensemble witha prescribed mean and covariance, consistent with the Kalman update. This includes several filters used in practice, such as the ensemble transform Kalman filter, the ensemble adjustment Kalman filter, and a filter by Whitaker and Hamill. We show that at every time index, as the number of ensemble members increases to infinity, the mean and covariance of an unbiased ensemble square root filter converge to those of the Kalman filter, in the case of a linear model and an initial distribution of which allmoments exist. The convergence is in all $L^p$, $1/leq p</infty$, with the usual rate $1//sqrt{N}$, and the constant does not depend on the model or the data dimensions. The result holds in infinite-dimensional separable Hilbert spaces a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIAM/ASA Journal on Uncertainty Quantification
ISSN
2166-2525
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
1-17
UT code for WoS article
—
EID of the result in the Scopus database
—