All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00439569" target="_blank" >RIV/67985807:_____/15:00439569 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/140965363" target="_blank" >http://dx.doi.org/10.1137/140965363</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/140965363" target="_blank" >10.1137/140965363</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit

  • Original language description

    Ensemble filters implement sequential Bayesian estimation by representing the probability distribution by an ensemble mean and covariance. Unbiased square root ensemble filters use deterministic algorithms to produce an analysis (posterior) ensemble witha prescribed mean and covariance, consistent with the Kalman update. This includes several filters used in practice, such as the ensemble transform Kalman filter, the ensemble adjustment Kalman filter, and a filter by Whitaker and Hamill. We show that at every time index, as the number of ensemble members increases to infinity, the mean and covariance of an unbiased ensemble square root filter converge to those of the Kalman filter, in the case of a linear model and an initial distribution of which allmoments exist. The convergence is in all $L^p$, $1/leq p</infty$, with the usual rate $1//sqrt{N}$, and the constant does not depend on the model or the data dimensions. The result holds in infinite-dimensional separable Hilbert spaces a

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM/ASA Journal on Uncertainty Quantification

  • ISSN

    2166-2525

  • e-ISSN

  • Volume of the periodical

    3

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    1-17

  • UT code for WoS article

  • EID of the result in the Scopus database