On the convergence of a non-linear ensemble Kalman smoother
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00498774" target="_blank" >RIV/67985807:_____/19:00498774 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apnum.2018.11.008" target="_blank" >http://dx.doi.org/10.1016/j.apnum.2018.11.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2018.11.008" target="_blank" >10.1016/j.apnum.2018.11.008</a>
Alternative languages
Result language
angličtina
Original language name
On the convergence of a non-linear ensemble Kalman smoother
Original language description
Ensemble methods, such as the ensemble Kalman filter (EnKF), the local ensemble transform Kalman filter (LETKF), and the ensemble Kalman smoother (EnKS) are widely used in sequential data assimilation, where state vectors are of huge dimension. Little is known, however, about the asymptotic behavior of ensemble methods. In this paper, we prove convergence in Lp of ensemble Kalman smoother to the Kalman smoother in the large-ensemble limit, as well as the convergence of EnKS-4DVAR, which is a Levenberg–Marquardt-like algorithm with EnKS as the linear solver, to the classical Levenberg–Marquardt algorithm in which the linearized problem is solved exactly.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Volume of the periodical
137
Issue of the periodical within the volume
March
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
18
Pages from-to
151-168
UT code for WoS article
000456765300010
EID of the result in the Scopus database
2-s2.0-85057621355