All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00444138" target="_blank" >RIV/67985807:_____/15:00444138 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/140987936" target="_blank" >http://dx.doi.org/10.1137/140987936</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/140987936" target="_blank" >10.1137/140987936</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Numerical Behavior of Matrix Splitting Iteration Methods for Solving Linear Systems

  • Original language description

    We study the numerical behavior of stationary one-step or two-step matrix splitting iteration methods for solving large sparse systems of linear equations. We show that inexact solutions of inner linear systems associated with the matrix splittings may considerably influence the accuracy of the approximate solutions computed in finite precision arithmetic. For a general stationary matrix splitting iteration method, we analyze two mathematically equivalent implementations and discuss the conditions whenthey are componentwise or normwise forward or backward stable. We show that a stationary iteration scheme in the residual-updating form is significantly more accurate than in its direct-splitting form when employing inexact inner solves. Theoretical results are illustrated by numerical experiments with the PMHSS method and with the HSS method representing the classes of inexact one-step and two-step splitting iteration methods, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA13-06684S" target="_blank" >GA13-06684S: Iterative Methods in Computational Mathematics: Analysis, Preconditioning, and Applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SIAM Journal on Numerical Analysis

  • ISSN

    0036-1429

  • e-ISSN

  • Volume of the periodical

    53

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    1716-1737

  • UT code for WoS article

    000360692100004

  • EID of the result in the Scopus database

    2-s2.0-84941066930