RBF Neural Networks and Radial Fuzzy Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00453637" target="_blank" >RIV/67985807:_____/15:00453637 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-23983-5_20" target="_blank" >http://dx.doi.org/10.1007/978-3-319-23983-5_20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-23983-5_20" target="_blank" >10.1007/978-3-319-23983-5_20</a>
Alternative languages
Result language
angličtina
Original language name
RBF Neural Networks and Radial Fuzzy Systems
Original language description
RBF neural networks are an efficient tool for acquisition and representation of functional relations reflected in empirical data. The interpretation of acquired knowledge is, however, generally difficult because the knowledge is encoded into values of the parameters of the network. Contrary to neural networks, fuzzy systems allow a more convenient interpretation of the stored knowledge in the form of IF-THEN rules. This paper contributes to the fusion of these two concepts. Namely, we show that a RBF neural network can be interpreted as the radial fuzzy system. The proposed approach is based on the study of conjunctive and implicative representations of the rule base in radial fuzzy systems. We present conditions under which both representations are computationally close and, as the consequence, a reasonable syntactic interpretation of RBF neural networks can be introduced.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LD13002" target="_blank" >LD13002: Modeling of complex systems for softcomputing methods</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Engineering Applications of Neural Networks
ISBN
978-3-319-23981-1
ISSN
1865-0929
e-ISSN
—
Number of pages
10
Pages from-to
206-215
Publisher name
Springer
Place of publication
Cham
Event location
Rhodes
Event date
Sep 25, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—