Dynamic Contact Problems in Bone Neoplasm Analyses and the Primal-Dual Active Set (PDAS) Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00456834" target="_blank" >RIV/67985807:_____/15:00456834 - isvavai.cz</a>
Result on the web
<a href="http://am2015.math.cas.cz/proceedings/contributions/nedoma.pdf" target="_blank" >http://am2015.math.cas.cz/proceedings/contributions/nedoma.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Dynamic Contact Problems in Bone Neoplasm Analyses and the Primal-Dual Active Set (PDAS) Method
Original language description
In the contribution growths of the neoplasms (benign and malignant tumors and cysts), located in a system of loaded bones, will be simulated. The main goal of the contribution is to present the useful methods and efficient algorithms for their solutions.Because the geometry of the system of loaded and possible fractured bones with enlarged neoplasms changes in time, the corresponding mathematical models of tumor?s and cyst?s evolutions lead to the coupled free boundary problems and the dynamic contactproblems with or without friction. The discussed parts of these models will be based on the theory of dynamic contact problems without or with Tresca or Coulomb frictions in the visco-elastic rheology. The numerical solution of the problem with Coulomb friction is based on the semi-implicit scheme in time and the finite element method in space, where the Coulomb law of friction at every time level will be approximated by its value from the previous time level. The algorithm for the corre
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Applications of Mathematics 2015
ISBN
978-80-85823-65-3
ISSN
—
e-ISSN
—
Number of pages
26
Pages from-to
158-183
Publisher name
Institute of Mathematics CAS
Place of publication
Prague
Event location
Prague
Event date
Nov 18, 2015
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—