All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Note on Strongly Dense Matrices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00457691" target="_blank" >RIV/67985807:_____/15:00457691 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s40879-015-0079-8" target="_blank" >http://dx.doi.org/10.1007/s40879-015-0079-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40879-015-0079-8" target="_blank" >10.1007/s40879-015-0079-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Note on Strongly Dense Matrices

  • Original language description

    In this note, strongly dense matrices are defined and some basic properties of these matrices are obtained. In particular, it is shown that for nonnegative and Boolean matrices, the product of conformable strongly dense matrices is strongly dense. Structural characterizations are presented for the idempotent nonnegative strongly dense matrices, as well as for the idempotent Boolean strongly dense matrices with a full diagonal. Connections with generalized complementary basic matrices are made.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Mathematics

  • ISSN

    2199-675X

  • e-ISSN

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    721-730

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84958683971