Weak Properties and Robustness of t-Hill Estimators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00460584" target="_blank" >RIV/67985807:_____/16:00460584 - isvavai.cz</a>
Alternative codes found
RIV/62156489:43110/16:43909772
Result on the web
<a href="http://dx.doi.org/10.1007/s10687-016-0256-2" target="_blank" >http://dx.doi.org/10.1007/s10687-016-0256-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10687-016-0256-2" target="_blank" >10.1007/s10687-016-0256-2</a>
Alternative languages
Result language
angličtina
Original language name
Weak Properties and Robustness of t-Hill Estimators
Original language description
e describe a novel method of heavy tails estimation based on transformed score (t-score). Based on a new score moment method we derive the t-Hill estimator, which estimates the extreme value index of a distribution function with regularly varying tail. t-Hill estimator is distribution sensitive, thus it differs in e.g. Pareto and log-gamma case. Here, we study both forms of the estimator, i.e. t-Hill and t-lgHill. For both estimators we prove weak consistency in moving average settings as well as the asymptotic normality of t-lgHill estimator in iid setting. In cases of contamination with heavier tails than the tail of original sample, t-Hill outperforms several robust tail estimators, especially in small samples. A simulation study emphasizes the fact that the level of contamination is playing a crucial role. The larger the contamination, the better are the t-score moment estimates. The reason for this is the bounded t-score of heavy-tailed distributions (and, consequently, bounded influence functions of the estimators). We illustrate the developed methodology on a small sample data set of stake measurements from Guanaco glacier in Chile.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Extremes
ISSN
1386-1999
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
36
Pages from-to
591-626
UT code for WoS article
000386530500002
EID of the result in the Scopus database
2-s2.0-84976293899