On Convergence of Kernel Density Estimates in Particle Filtering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00469752" target="_blank" >RIV/67985807:_____/16:00469752 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14736/kyb-2016-5-0735" target="_blank" >http://dx.doi.org/10.14736/kyb-2016-5-0735</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2016-5-0735" target="_blank" >10.14736/kyb-2016-5-0735</a>
Alternative languages
Result language
angličtina
Original language name
On Convergence of Kernel Density Estimates in Particle Filtering
Original language description
The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kybernetika
ISSN
0023-5954
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
5
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
22
Pages from-to
735-756
UT code for WoS article
000392351600005
EID of the result in the Scopus database
2-s2.0-85008368382