On Persistence of Convergence of Kernel Density Estimates in Particle Filtering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00505260" target="_blank" >RIV/67985807:_____/20:00505260 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-18058-4_27" target="_blank" >http://dx.doi.org/10.1007/978-3-030-18058-4_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-18058-4_27" target="_blank" >10.1007/978-3-030-18058-4_27</a>
Alternative languages
Result language
angličtina
Original language name
On Persistence of Convergence of Kernel Density Estimates in Particle Filtering
Original language description
A sufficient condition is provided for keeping the character of the filtering density in the filtering task. This is done for the Sobolev class of filtering densities. As a consequence, estimating the filtering density in particle filtering persists its convergence at any time of filtering. Specifying the condition complements previous results on using the kernel density estimates in particle filtering.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Information Technology, Systems Research, and Computational Physics
ISBN
978-3-030-18057-7
ISSN
2194-5357
e-ISSN
—
Number of pages
8
Pages from-to
339-346
Publisher name
Springer
Place of publication
Cham
Event location
Cracow
Event date
Jul 2, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000493382100027