Rees Coextensions of Finite, Negative Tomonoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00448464" target="_blank" >RIV/67985807:_____/17:00448464 - isvavai.cz</a>
Alternative codes found
RIV/60460709:41310/17:74544
Result on the web
<a href="http://dx.doi.org/10.1093/logcom/exv047" target="_blank" >http://dx.doi.org/10.1093/logcom/exv047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/logcom/exv047" target="_blank" >10.1093/logcom/exv047</a>
Alternative languages
Result language
angličtina
Original language name
Rees Coextensions of Finite, Negative Tomonoids
Original language description
A totally ordered monoid, or tomonoid for short, is a monoid endowed with a compatible total order. We deal in this article with tomonoids that are finite and negative, where negativity means that the monoidal identity is the top element. Examples can be found, for instance, in the context of finite-valued fuzzy logic. By a Rees coextension of a negative tomonoid S, we mean a negative tomonoid T such that a Rees quotient of T is isomorphic to S. We characterize the set of all those Rees coextensions of a finite, negative tomonoid that are by one element larger. We thereby define a method of generating all such tomonoids in a stepwise fashion. Our description relies on the level-set representation of tomonoids, which allows us to identify the structures in question with partitions of a certain type.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GPP201%2F12%2FP055" target="_blank" >GPP201/12/P055: Geometry of associative structures</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Logic and Computation
ISSN
0955-792X
e-ISSN
—
Volume of the periodical
27
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
337-356
UT code for WoS article
000397037900013
EID of the result in the Scopus database
2-s2.0-85014640209