All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Rees Coextensions of Finite Tomonoids and Free Pomonoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00494908" target="_blank" >RIV/67985807:_____/19:00494908 - isvavai.cz</a>

  • Alternative codes found

    RIV/60460709:41310/19:79803

  • Result on the web

    <a href="http://hdl.handle.net/11104/0287953" target="_blank" >http://hdl.handle.net/11104/0287953</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00233-018-9972-z" target="_blank" >10.1007/s00233-018-9972-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Rees Coextensions of Finite Tomonoids and Free Pomonoids

  • Original language description

    A totally ordered monoid, or tomonoid for short, is a monoid endowed with a compatible total order. We reconsider in this paper the problem of describing the one-element Rees coextensions of a finite, negative tomonoid S, that is, those tomonoids that are by one element larger than S and whose Rees quotient by the poideal consisting of the two smallest elements is isomorphic to S. We show that any such coextension is a quotient of a pomonoid R(S) , called the free one-element Rees coextension of S. We investigate the structure of R(S) and describe the relevant congruences. We moreover introduce a finite family of finite quotients of R(S) from which the coextensions arise in a particularly simple way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ15-07724Y" target="_blank" >GJ15-07724Y: Totally ordered monoids</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Semigroup Forum

  • ISSN

    0037-1912

  • e-ISSN

  • Volume of the periodical

    99

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

    345-367

  • UT code for WoS article

    000493610000010

  • EID of the result in the Scopus database

    2-s2.0-85054095750