Rees Coextensions of Finite Tomonoids and Free Pomonoids
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00494908" target="_blank" >RIV/67985807:_____/19:00494908 - isvavai.cz</a>
Alternative codes found
RIV/60460709:41310/19:79803
Result on the web
<a href="http://hdl.handle.net/11104/0287953" target="_blank" >http://hdl.handle.net/11104/0287953</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00233-018-9972-z" target="_blank" >10.1007/s00233-018-9972-z</a>
Alternative languages
Result language
angličtina
Original language name
Rees Coextensions of Finite Tomonoids and Free Pomonoids
Original language description
A totally ordered monoid, or tomonoid for short, is a monoid endowed with a compatible total order. We reconsider in this paper the problem of describing the one-element Rees coextensions of a finite, negative tomonoid S, that is, those tomonoids that are by one element larger than S and whose Rees quotient by the poideal consisting of the two smallest elements is isomorphic to S. We show that any such coextension is a quotient of a pomonoid R(S) , called the free one-element Rees coextension of S. We investigate the structure of R(S) and describe the relevant congruences. We moreover introduce a finite family of finite quotients of R(S) from which the coextensions arise in a particularly simple way.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ15-07724Y" target="_blank" >GJ15-07724Y: Totally ordered monoids</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
—
Volume of the periodical
99
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
345-367
UT code for WoS article
000493610000010
EID of the result in the Scopus database
2-s2.0-85054095750