All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Probabilistic Lower Bounds for Approximation by Shallow Perceptron Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00473964" target="_blank" >RIV/67985807:_____/17:00473964 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neunet.2017.04.003" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2017.04.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neunet.2017.04.003" target="_blank" >10.1016/j.neunet.2017.04.003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Probabilistic Lower Bounds for Approximation by Shallow Perceptron Networks

  • Original language description

    Limitations of approximation capabilities of shallow perceptron networks are investigated. Lower bounds on approximation errors are derived for binary-valued functions on finite domains. It is proven that unless the number of network units is sufficiently large (larger than any polynomial of the logarithm of the size of the domain) a good approximation cannot be achieved for almost any uniformly randomly chosen function on a given domain. The results are obtained by combining probabilistic Chernoff-Hoeffing bounds with estimates of the sizes of sets of functions exactly computable by shallow networks with increasing numbers of units.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA15-18108S" target="_blank" >GA15-18108S: Model complexity of neural, radial, and kernel networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Networks

  • ISSN

    0893-6080

  • e-ISSN

  • Volume of the periodical

    91

  • Issue of the periodical within the volume

    July

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    34-41

  • UT code for WoS article

    000405461500004

  • EID of the result in the Scopus database

    2-s2.0-85018794584