Parallel Evolutionary Algorithm with Interleaving Generations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477041" target="_blank" >RIV/67985807:_____/17:00477041 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10361034
Result on the web
<a href="http://dx.doi.org/10.1145/3071178.3071309" target="_blank" >http://dx.doi.org/10.1145/3071178.3071309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3071178.3071309" target="_blank" >10.1145/3071178.3071309</a>
Alternative languages
Result language
angličtina
Original language name
Parallel Evolutionary Algorithm with Interleaving Generations
Original language description
We present a parallel evolutionary algorithm with interleaving generations. The algorithm uses a careful analysis of genetic operators and selection in order to evaluate individuals from following generations while the current generation is still not completely evaluated. This brings significant advantages in cases where each fitness evaluation takes different amount of time, the evaluations are performed in parallel, and a traditional generational evolutionary algorithm has to wait for all evaluations to finish. The proposed algorithm provides better utilization of computational resources in these cases. Moreover, the algorithm is functionally equivalent to the generational evolutionary algorithm, and thus it does not have any evaluation time bias, which is often present in asynchronous evolutionary algorithms. The proposed algorithm is tested in a series of simple experiments and its effectiveness is compared to the effectiveness of the generational evolutionary algorithm in terms of CPU utilization.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-19877S" target="_blank" >GA15-19877S: Automated Knowledge and Plan Modeling for Autonomous Robots</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GECCO 2017. Proceedings of the 2017 Genetic and Evolutionary Computation Conference
ISBN
978-1-4503-4920-8
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
865-872
Publisher name
ACM
Place of publication
New York
Event location
Berlin
Event date
Jul 15, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—