Wind Speed Forecasting for a Large-Scale Measurement Network and Numerical Weather Modeling
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477859" target="_blank" >RIV/67985807:_____/17:00477859 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-55789-2_25" target="_blank" >http://dx.doi.org/10.1007/978-3-319-55789-2_25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-55789-2_25" target="_blank" >10.1007/978-3-319-55789-2_25</a>
Alternative languages
Result language
angličtina
Original language name
Wind Speed Forecasting for a Large-Scale Measurement Network and Numerical Weather Modeling
Original language description
We investigate various problems encountered when forecasting wind speeds for a network of measurements stations using outputs of numerical weather prediction (NWP) model as one of the predictors in a statistical forecasting model. First, it is interesting to analyze prediction error properties for different station types (professional and amateur). Secondly, the statistical model can be viewed as a calibration of the original NWP model. Hence, careful semi-parametric smoothing of NWP input can discover various weak points of the NWP, and at the same time, it improves forecasting performance. It turns out that useful information is contained not only in the latest prediction available. It is beneficial to combine different horizon NWP predictions to one target time. GARCH sub-model for the residuals then shows complicated structure usable for short-term forecasts.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Time Series Analysis and Forecasting
ISBN
978-3-319-55788-5
ISSN
1431-1968
e-ISSN
—
Number of pages
13
Pages from-to
361-373
Publisher name
Springer
Place of publication
Cham
Event location
Granada
Event date
Jun 27, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—