All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wind Speed Forecasting for a Large-Scale Measurement Network and Numerical Weather Modeling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477859" target="_blank" >RIV/67985807:_____/17:00477859 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-55789-2_25" target="_blank" >http://dx.doi.org/10.1007/978-3-319-55789-2_25</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-55789-2_25" target="_blank" >10.1007/978-3-319-55789-2_25</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wind Speed Forecasting for a Large-Scale Measurement Network and Numerical Weather Modeling

  • Original language description

    We investigate various problems encountered when forecasting wind speeds for a network of measurements stations using outputs of numerical weather prediction (NWP) model as one of the predictors in a statistical forecasting model. First, it is interesting to analyze prediction error properties for different station types (professional and amateur). Secondly, the statistical model can be viewed as a calibration of the original NWP model. Hence, careful semi-parametric smoothing of NWP input can discover various weak points of the NWP, and at the same time, it improves forecasting performance. It turns out that useful information is contained not only in the latest prediction available. It is beneficial to combine different horizon NWP predictions to one target time. GARCH sub-model for the residuals then shows complicated structure usable for short-term forecasts.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA13-34856S" target="_blank" >GA13-34856S: Advanced random field methods in data assimilation for short-term weather prediction</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Time Series Analysis and Forecasting

  • ISBN

    978-3-319-55788-5

  • ISSN

    1431-1968

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    361-373

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Granada

  • Event date

    Jun 27, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article