Epimorphisms in Varieties of Residuated Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00478590" target="_blank" >RIV/67985807:_____/17:00478590 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jalgebra.2017.08.023" target="_blank" >http://dx.doi.org/10.1016/j.jalgebra.2017.08.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2017.08.023" target="_blank" >10.1016/j.jalgebra.2017.08.023</a>
Alternative languages
Result language
angličtina
Original language name
Epimorphisms in Varieties of Residuated Structures
Original language description
It is proved that epimorphisms are surjective in a range of varieties of residuated structures, including all varieties of Heyting or Brouwerian algebras of finite depth, and all varieties consisting of Gödel algebras, relative Stone algebras, Sugihara monoids or positive Sugihara monoids. This establishes the infinite deductive Beth definability property for a corresponding range of substructural logics. On the other hand, it is shown that epimorphisms need not be surjective in a locally finite variety of Heyting or Brouwerian algebras of width 2. It follows that the infinite Beth property is strictly stronger than the so-called finite Beth property, confirming a conjecture of Blok and Hoogland.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA17-04630S" target="_blank" >GA17-04630S: Predicate graded logics and their applications to computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
492
Issue of the periodical within the volume
15 December
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
185-211
UT code for WoS article
000413129900011
EID of the result in the Scopus database
2-s2.0-85031293860