Epimorphisms in Varieties of Subidempotent Rresiduated Structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00538234" target="_blank" >RIV/67985807:_____/21:00538234 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00012-020-00694-2" target="_blank" >http://dx.doi.org/10.1007/s00012-020-00694-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-020-00694-2" target="_blank" >10.1007/s00012-020-00694-2</a>
Alternative languages
Result language
angličtina
Original language name
Epimorphisms in Varieties of Subidempotent Rresiduated Structures
Original language description
A commutative residuated lattice A is said to be subidempotent if the lower bounds of its neutral element e are idempotent (in which case they naturally constitute a Brouwerian algebra A-). It is proved here that epimorphisms are surjective in a variety K of such algebras A (with or without involution), provided that each finitely subdirectly irreducible algebra B∈ K has two properties: (1) B is generated by lower bounds of e, and (2) the poset of prime filters of B- has finite depth. Neither (1) nor (2) may be dropped. The proof adapts to the presence of bounds. The result generalizes some recent findings of G. Bezhanishvili and the first two authors concerning epimorphisms in varieties of Brouwerian algebras, Heyting algebras and Sugihara monoids, but its scope also encompasses a range of interesting varieties of De Morgan monoids.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EF17_050%2F0008361" target="_blank" >EF17_050/0008361: Enhancing human resources for research in theoretical computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
1420-8911
Volume of the periodical
82
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
6
UT code for WoS article
000606863000002
EID of the result in the Scopus database
2-s2.0-85098701366