Modules over quantaloids: Applications to the isomorphism problem in algebraic logic and pi-institutions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00506928" target="_blank" >RIV/67985807:_____/17:00506928 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jpaa.2016.05.012" target="_blank" >http://dx.doi.org/10.1016/j.jpaa.2016.05.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2016.05.012" target="_blank" >10.1016/j.jpaa.2016.05.012</a>
Alternative languages
Result language
angličtina
Original language name
Modules over quantaloids: Applications to the isomorphism problem in algebraic logic and pi-institutions
Original language description
We solve the isomorphism problem in the context of abstract algebraic logic and of π-institutions, namely the problem of when the notions of syntactic and semantic equivalence among logics coincide. The problem is solved in the general setting of categories of modules over quantaloids. We introduce closure operators on modules over quantaloids and their associated morphisms. We show that, up to isomorphism, epis are morphisms associated with closure operators. The notions of (semi-)interpretability and (semi-)representability are introduced and studied. We introduce cyclic modules, and provide a characterization for cyclic projective modules as those having a g-variable. Finally, we explain how every π-institution induces a module over a quantaloid, and thus the theory of modules over quantaloids can be considered as an abstraction of the theory of π-institutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Mathematical Fuzzy Logic in Computer Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
—
Volume of the periodical
221
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
1-24
UT code for WoS article
000384864100001
EID of the result in the Scopus database
2-s2.0-84977630894