Three Analog Neurons Are Turing Universal
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00490784" target="_blank" >RIV/67985807:_____/18:00490784 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-04070-3_36" target="_blank" >http://dx.doi.org/10.1007/978-3-030-04070-3_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-04070-3_36" target="_blank" >10.1007/978-3-030-04070-3_36</a>
Alternative languages
Result language
angličtina
Original language name
Three Analog Neurons Are Turing Universal
Original language description
The languages accepted online by binary-state neural networks with rational weights have been shown to be context-sensitive when an extra analog neuron is added (1ANNs). In this paper, we provide an upper bound on the number of additional analog units to achieve Turing universality. We prove that any Turing machine can be simulated by a binary-state neural network extended with three analog neurons (3ANNs) having rational weights, with a linear-time overhead. Thus, the languages accepted offline by 3ANNs with rational weights are recursively enumerable, which refines the classification of neural networks within the Chomsky hierarchy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Theory and Practice of Natural Computing
ISBN
978-3-030-04069-7
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
460-472
Publisher name
Springer
Place of publication
Cham
Event location
Dublin
Event date
Dec 12, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—