Analog Neuron Hierarchy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00507515" target="_blank" >RIV/67985807:_____/20:00507515 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.neunet.2020.05.006" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2020.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2020.05.006" target="_blank" >10.1016/j.neunet.2020.05.006</a>
Alternative languages
Result language
angličtina
Original language name
Analog Neuron Hierarchy
Original language description
In order to refine the analysis of the computational power of discrete-time recurrent neural networks (NNs) between the binary-state NNs which are equivalent to finite automata (level 3 in the Chomsky hierarchy), and the analog-state NNs with rational weights which are Turing complete (Chomsky level 0), we study an intermediate model alphaANN of a binary-state NN that is extended with alpha >= 0 extra analog-state neurons. For rational weights, we establish an analog neuron hierarchy 0ANNs subset 1ANNs subset 2ANNs subseteq 3ANNs and separate its first two levels. In particular, 0ANNs coincide with the binary-state NNs (Chomsky level 3) being a proper subset of 1ANNs which accept at most context-sensitive languages (Chomsky level 1) including some non-context-free ones (above Chomsky level 2). We prove that the deterministic (context-free) language L_# = { 0^n1^n | n >= 1 } cannot be recognized by any 1ANN even with real weights. In contrast, we show that deterministic pushdown automata accepting deterministic languages can be simulated by 2ANNs with rational weights, which thus constitute a proper superset of 1ANNs. Finally, we prove that the analog neuron hierarchy collapses to 3ANNs by showing that any Turing machine can be simulated by a 3ANN having rational weights, with linear-time overhead.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Networks
ISSN
0893-6080
e-ISSN
—
Volume of the periodical
128
Issue of the periodical within the volume
August 2020
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
199-215
UT code for WoS article
000567812200017
EID of the result in the Scopus database
2-s2.0-85084938909