One Analog Neuron Cannot Recognize Deterministic Context-Free Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00505945" target="_blank" >RIV/67985807:_____/19:00505945 - isvavai.cz</a>
Result on the web
<a href="https://www.springer.com/gp/book/9783030367176" target="_blank" >https://www.springer.com/gp/book/9783030367176</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-36718-3_7" target="_blank" >10.1007/978-3-030-36718-3_7</a>
Alternative languages
Result language
angličtina
Original language name
One Analog Neuron Cannot Recognize Deterministic Context-Free Languages
Original language description
We analyze the computational power of discrete-time recurrent neural networks (NNs) with the saturated-linear activation function within the Chomsky hierarchy. This model restricted to integer weights coincides with binary-state NNs with the Heaviside activation function, which are equivalent to finite automata (Chomsky level 3), while rational weights make this model Turing complete even for three analog-state units (Chomsky level 0). For an intermediate model alphaANN of a binary-state NN that is extended with alpha>=0 extra analog-state neurons with rational weights, we have established the analog neuron hierarchy 0ANNs subset 1ANNs subset 2ANNs subseteq 3ANNs. The separation 1ANNs subsetneq 2ANNs has been witnessed by the deterministic context-free language (DCFL) L_#={0^n1^n|n>=1} which cannot be recognized by any 1ANN even with real weights, while any DCFL (Chomsky level 2) is accepted by a 2ANN with rational weights. In this paper, we generalize this result by showing that any non-regular DCFL cannot be recognized by 1ANNs with real weights, which means (DCFLs-REG) subset (2ANNs-1ANNs), implying 0ANNs = 1ANNs cap DCFLs. For this purpose, we show that L_# is the simplest non-regular DCFL by reducing L_# to any language in this class, which is by itself an interesting achievement in computability theory.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytical Foundations of Neurocomputing</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Neural Information Processing. Proceedings, Part III
ISBN
978-3-030-36717-6
ISSN
—
e-ISSN
—
Number of pages
13
Pages from-to
77-89
Publisher name
Springer
Place of publication
Heidelberg
Event location
Sydney
Event date
Dec 12, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—