All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Semigroup Structure of Sets of Solutions to Equation X^m = X^s

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00493285" target="_blank" >RIV/67985807:_____/18:00493285 - isvavai.cz</a>

  • Result on the web

    <a href="http://ac.inf.elte.hu/Vol_048_2018/151_48.pdf" target="_blank" >http://ac.inf.elte.hu/Vol_048_2018/151_48.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Semigroup Structure of Sets of Solutions to Equation X^m = X^s

  • Original language description

    We describe the semigroup and group structure of the set of solutions to equation X^m = X^s over the multiplicative semigroups of factor rings of residually finite commutative rings and of residually finite commutative PID’s. The analysis is done in terms of the structure of maximal unipotent subsemigroups and subgroups of semigroups of the corresponding rings. In case of residually finite PID’s we employ the available idempotents analysis of the Euler–Fermat Theorem in these rings used to determine minimal positive integers nu and nu such that for all elements x of these rings one has x^(kappa+delta)= x^kappa. In particular, the case when this set of solutions is a union of groups is handled. As a simple application we show a not yet noticed group structure of the set of solutions to x^n = x (mod n) connected with the message space of RSA cryptosystems and Fermat pseudoprimes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae. Annales. Sectio Computatorica

  • ISSN

    0138-9491

  • e-ISSN

  • Volume of the periodical

    48

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    17

  • Pages from-to

    151-167

  • UT code for WoS article

  • EID of the result in the Scopus database