Layout of Random Circulant Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494245" target="_blank" >RIV/67985807:_____/18:00494245 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.laa.2018.09.003" target="_blank" >http://dx.doi.org/10.1016/j.laa.2018.09.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2018.09.003" target="_blank" >10.1016/j.laa.2018.09.003</a>
Alternative languages
Result language
angličtina
Original language name
Layout of Random Circulant Graphs
Original language description
A circulant graph G is a graph on n vertices that can be numbered from 0 to n−1 in such a way that, if two vertices x and (x+d) mod n are adjacent, then every two vertices z and (z+d) mod n are adjacent. We call layout of the circulant graph any numbering that witness this definition. A random circulant graph results from deleting each edge of G uniformly with probability 1−p. We address the problem of finding the layout of a random circulant graph. We provide a polynomial time algorithm that approximates the solution and we bound the error of the approximation with high probability.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GJ16-07822Y" target="_blank" >GJ16-07822Y: Extremal graph theory and applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Volume of the periodical
559
Issue of the periodical within the volume
15 December
Country of publishing house
US - UNITED STATES
Number of pages
19
Pages from-to
95-113
UT code for WoS article
000447478500007
EID of the result in the Scopus database
2-s2.0-85053058637